A Nearly-Linear Time Algorithm for Approximately Solving Linear Systems in a Symmetric M-Matrix

نویسندگان

  • Samuel I. Daitch
  • Daniel A. Spielman
چکیده

We present an algorithm for solving a linear system in a symmetric M-matrix. In particular, for n × n symmetric M-matrix M , we show how to find a diagonal matrix D such that DMD is diagonallydominant. To compute D, the algorithm must solve O (log n) linear systems in diagonally-dominant matrices. If we solve these diagonallydominant systems approximately using the Spielman-Teng nearly-linear time solver [1], then we obtain an algorithm for approximately solving linear systems in symmetric M-matrices, for which the expected running time is also nearly-linear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DECOMPOSITION METHOD FOR SOLVING FULLY FUZZY LINEAR SYSTEMS

In this paper, we investigate the existence of a positive solution of fully fuzzy linear equation systems. This paper mainly to discuss a new decomposition of a nonsingular fuzzy matrix, the symmetric times triangular (ST) decomposition. By this decomposition, every nonsingular fuzzy matrix can be represented as a product of a fuzzy symmetric matrix S and a fuzzy triangular matrix T.

متن کامل

A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

In this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. Also necessary and sufficient conditions for existenceof solution are given. Some numerical examples illustrate the efficiencyof the method.

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

4 Nearly - Linear Time Algorithms for Graph Partitioning , Graph Sparsification , and Solving Linear Systems preliminary draft

We develop nearly-linear time algorithms for approximately solving sparse symmetric diagonally-dominant linear systems. In particular, we present a linear-system solver that, given an n-by-n symmetric diagonally-dominant matrix A with m non-zero entries and an n-vector b, produces a vector x̃ satisfying ‖x̃ − x‖A ≤ ǫ, where x is the solution to Ax = b, in time m log m+O (m log(1/ǫ)) + n2 √ log n ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009